torchlogix.layers.LogicConv2d

class torchlogix.layers.LogicConv2d(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', weight_init='residual', stride=1, padding=0, parametrization='raw', temperature=1.0, forward_sampling='soft')[source]

2d convolutional layer with differentiable logic operations.

This layer implements a 2d convolution with differentiable logic operations. It uses a binary tree structure to combine input features using logical operations.

__init__(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', weight_init='residual', stride=1, padding=0, parametrization='raw', temperature=1.0, forward_sampling='soft')[source]

Initialize the 2d logic convolutional layer.

Parameters:
  • in_dim (Union[int, tuple[int, int]]) – Input dimensions (height, width)

  • device (str) – Device to run the layer on

  • grad_factor (float) – Gradient factor for the logic operations

  • channels (int) – Number of input channels

  • num_kernels (int) – Number of output kernels

  • tree_depth (int) – Depth of the binary tree

  • receptive_field_size (int) – Size of the receptive field

  • implementation (str) – Implementation type (“python” or “cuda”)

  • connections (str) – Connection type: “random” or “unique”. The latter will overwrite the tree_depth parameter and use a full binary tree of all possible connections within the receptive field.

  • stride (int) – Stride of the convolution

  • padding (int) – Padding of the convolution

  • parametrization (str) – Parametrization to use (“raw” or “walsh”)

Methods

__init__(in_dim[, device, grad_factor, ...])

Initialize the 2d logic convolutional layer.

add_module(name, module)

Add a child module to the current module.

apply(fn)

Apply fn recursively to every submodule (as returned by .children()) as well as self.

apply_sliding_window(pairs_tuple)

Apply sliding window to the receptive field pairs across all kernel positions.

bfloat16()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers([recurse])

Return an iterator over module buffers.

children()

Return an iterator over immediate children modules.

compile(*args, **kwargs)

Compile this Module's forward using torch.compile().

cpu()

Move all model parameters and buffers to the CPU.

cuda([device])

Move all model parameters and buffers to the GPU.

double()

Casts all floating point parameters and buffers to double datatype.

eval()

Set the module in evaluation mode.

extra_repr()

Return the extra representation of the module.

float()

Casts all floating point parameters and buffers to float datatype.

forward(x)

Implement the binary tree using the pre-selected indices.

get_buffer(target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state()

Return any extra state to include in the module's state_dict.

get_indices_from_kernel_pairs(pairs_tuple)

get_parameter(target)

Return the parameter given by target if it exists, otherwise throw an error.

get_random_receptive_field_pairs()

Generate random index pairs within the receptive field for each kernel.

get_random_unique_receptive_field_pairs()

Generate random unique index pairs within the receptive field for each kernel.

get_submodule(target)

Return the submodule given by target if it exists, otherwise throw an error.

half()

Casts all floating point parameters and buffers to half datatype.

ipu([device])

Move all model parameters and buffers to the IPU.

load_state_dict(state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

modules()

Return an iterator over all modules in the network.

mtia([device])

Move all model parameters and buffers to the MTIA.

named_buffers([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters([recurse])

Return an iterator over module parameters.

register_backward_hook(hook)

Register a backward hook on the module.

register_buffer(name, tensor[, persistent])

Add a buffer to the module.

register_forward_hook(hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook(hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook(hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook(hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook(hook)

Register a post-hook to be run after module's load_state_dict() is called.

register_load_state_dict_pre_hook(hook)

Register a pre-hook to be run before module's load_state_dict() is called.

register_module(name, module)

Alias for add_module().

register_parameter(name, param)

Add a parameter to the module.

register_state_dict_post_hook(hook)

Register a post-hook for the state_dict() method.

register_state_dict_pre_hook(hook)

Register a pre-hook for the state_dict() method.

requires_grad_([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state(state)

Set extra state contained in the loaded state_dict.

set_submodule(target, module[, strict])

Set the submodule given by target if it exists, otherwise throw an error.

share_memory()

See torch.Tensor.share_memory_().

state_dict(*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to(*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty(*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

train([mode])

Set the module in training mode.

type(dst_type)

Casts all parameters and buffers to dst_type.

xpu([device])

Move all model parameters and buffers to the XPU.

zero_grad([set_to_none])

Reset gradients of all model parameters.

Attributes

T_destination

call_super_init

dump_patches

training

__init__(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', weight_init='residual', stride=1, padding=0, parametrization='raw', temperature=1.0, forward_sampling='soft')[source]

Initialize the 2d logic convolutional layer.

Parameters:
  • in_dim (Union[int, tuple[int, int]]) – Input dimensions (height, width)

  • device (str) – Device to run the layer on

  • grad_factor (float) – Gradient factor for the logic operations

  • channels (int) – Number of input channels

  • num_kernels (int) – Number of output kernels

  • tree_depth (int) – Depth of the binary tree

  • receptive_field_size (int) – Size of the receptive field

  • implementation (str) – Implementation type (“python” or “cuda”)

  • connections (str) – Connection type: “random” or “unique”. The latter will overwrite the tree_depth parameter and use a full binary tree of all possible connections within the receptive field.

  • stride (int) – Stride of the convolution

  • padding (int) – Padding of the convolution

  • parametrization (str) – Parametrization to use (“raw” or “walsh”)

forward(x)[source]

Implement the binary tree using the pre-selected indices.

get_random_receptive_field_pairs()[source]

Generate random index pairs within the receptive field for each kernel. May contain self connections and duplicate connections.

get_random_unique_receptive_field_pairs()[source]

Generate random unique index pairs within the receptive field for each kernel. No self-connections or duplicate pairs.

apply_sliding_window(pairs_tuple)[source]

Apply sliding window to the receptive field pairs across all kernel positions.

get_indices_from_kernel_pairs(pairs_tuple)[source]