torchlogix.layers.LogicConv3d
- class torchlogix.layers.LogicConv3d(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', stride=1, padding=None)[source]
3d convolutional layer with differentiable logic operations.
This layer implements a 3d convolution with differentiable logic operations. It uses a binary tree structure to combine input features using logical operations.
- __init__(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', stride=1, padding=None)[source]
Initialize the 3d logic convolutional layer.
- Parameters:
in_dim (
Union[int,tuple[int,int,int]]) – Input dimensions (height, width, depth)device (
str) – Device to run the layer ongrad_factor (
float) – Gradient factor for the logic operationschannels (
int) – Number of input channelsnum_kernels (
int) – Number of output kernelstree_depth (
int) – Depth of the binary treereceptive_field_size (
Union[int,tuple[int,int,int]]) – Size of the receptive fieldimplementation (
str) – Implementation type (“python” or “cuda”)connections (
str) – Connection type: “random” or “unique”. The latter will overwrite the tree_depth parameter and use a full binary tree of all possible connections within the receptive field.stride (
int) – Stride of the convolutionpadding (
int) – Padding of the convolution
Methods
__init__(in_dim[, device, grad_factor, ...])Initialize the 3d logic convolutional layer.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.apply_sliding_window(pairs_tuple)Apply sliding window to the receptive field pairs across all kernel positions.
bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x)Implement the binary tree using the pre-selected indices.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_indices_from_kernel_pairs(pairs_tuple)get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.Generate random index pairs within the receptive field for each kernel.
Generate random unique index pairs within the receptive field for each kernel.
get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patches- __init__(in_dim, device='cuda', grad_factor=1.0, channels=1, num_kernels=16, tree_depth=None, receptive_field_size=None, implementation=None, connections='random', stride=1, padding=None)[source]
Initialize the 3d logic convolutional layer.
- Parameters:
in_dim (
Union[int,tuple[int,int,int]]) – Input dimensions (height, width, depth)device (
str) – Device to run the layer ongrad_factor (
float) – Gradient factor for the logic operationschannels (
int) – Number of input channelsnum_kernels (
int) – Number of output kernelstree_depth (
int) – Depth of the binary treereceptive_field_size (
Union[int,tuple[int,int,int]]) – Size of the receptive fieldimplementation (
str) – Implementation type (“python” or “cuda”)connections (
str) – Connection type: “random” or “unique”. The latter will overwrite the tree_depth parameter and use a full binary tree of all possible connections within the receptive field.stride (
int) – Stride of the convolutionpadding (
int) – Padding of the convolution
- get_random_receptive_field_pairs()[source]
Generate random index pairs within the receptive field for each kernel. May contain self connections and duplicate connections.
- get_random_unique_receptive_field_pairs()[source]
Generate random unique index pairs within the receptive field for each kernel. No self-connections or duplicate pairs.